
Imitation Learning for StarCraft II

Roman Ring
University of Tartu
roman.ring@ut.ee

Abstract

Imitation Learning (IL) is a subfield of Artificial Intelligence which deals with
an agent learning to perform some task by observing expert demonstrations. In
this project we explore the IL approach by training an agent in the StarCraft II
environment. We show that the agent is able to achieve close to state-of-the-art
results with reasonable amount of expert samples, requiring a fraction of the time
it would take for an Reinforcement Learning based agent.

1 Introduction

A typical problem artificial intelligence attempts to solve involves an agent navigating in an envi-
ronment while maximizing the resulting rewards. Researchers have explored many different ways
to approach this problem – from rule-based agents that operated based on hand-crafted features
provided by the domain experts; to agents independently learning desired behavior with artificial
neural networks.

While the end goal of artificial intelligence based algorithms is typically in some real-world application
such as robotics or finance, a simpler environment is necessary during development and evaluation
stages to ensure that experiments are quick and easy to execute and replicate. Historically AI
algorithms are benchmarked on various games as they have clear rules for navigation and rewards.
With modern AI approaches, both classical board games [Silver et al., 2016] and modern video
games [Mnih et al., 2015] are explored.

An intuitive approach to training an AI based agent the desired behavior is Imitation Learning
(IL), where an agent is trained through demonstrations of a domain expert. This approach shares
many drawbacks with supervised learning based approaches, namely it is difficult to achieve good
generalization capabilities while keeping the training dataset size at a reasonable level. Despite its
drawbacks, this approach is favorable to many researchers as there are many fields that would benefit
from AI automation with human experts providing the demonstrations, e.g. self-driving cars.

In this project we explore imitation learning based approach to the problem of navigating a set of
complex tasks in a modern video game environment – StarCraft II video game. We compare results
of the implemented IL agent with baseline reinforcement learning (RL) based approaches. We then
investigate possibility of a hybrid approach of pre-training an agent model with an IL agent and
improving it with an RL agent.

2 Background

The environments described in this work are typically modeled through Markov Decision Processes
(MDP), which are defined by a set of states S, a set of actions A, transition probability P (s′|s, a)
and immediate reward function R(s′|s, a). The end goal for the agent learning to navigate in a given
environment is an optimal policy π, which maps the best possible actions for any encountered state
(determined by expected total rewards). A policy can be either deterministic or stochastic, discrete or
continuous.



With imitation learning based approaches target policy π is learned by observing expert demonstra-
tions, typically in an offline fashion. Demonstrations are usually provided beforehand by experts of
the domain an agent will be navigating in.

An ideal outcome of imitation learning would be an agent that is able to not only replicate expert
behavior, but also generalize well to previously unseen states. In practice this is typically unrealistic,
as even minor deviation from optimal policy can lead to wildly different behavior over significant
amount of time.

A popular (although naive) approach to imitation learning is behavior cloning, where an agent
"memorizes" expert behavior by training on a dataset of (state, action) pairs. If action space is discrete
then the problem of behavior cloning reduces to classification between predicted policy and expert
actions in a supervised learning fashion. Agents model is typically trained with stochastic gradient
descend (SGD) or its variants.

If the problem is reduced to classification then the underlying optimization target for the SGD can be
defined with categorical cross-entropy loss:

J(θ) =

M∑
i=1

yi log(π(ai|si; θ))

where M is the number of (ai, si) samples of expert (state, action) pairs, yi is one-hot encoded vector
of the expert action ai for i-ith sample and π(ai|si; θ) is the probability of the agent choosing action
ai given state si.

3 Methods

We implement the Imitation Learning agent by adapting the codebase of [Ring, 2018]. In particular,
we fully reuse the model definition of the Advantage Actor-Critic (A2C) Agent and implement the
necessary cross-entropy loss function in a custom IL Agent class (Figure 1). This was possible as
A2C Agent was implemented in such a way that everything related to the agent model, including
output policies, was defined separately from the agent class, passed to it in the constructor as a lambda
function.

(a)

(b)

Figure 1: (a) A2C Agent pipeline with A2C loss at the end. (b) IL Agent pipeline, reusing A2C input
and model layers, only replacing A2C loss with CE loss.

As the codebase is implemented in TensorFlow [Abadi et al., 2016], significant amount of time was
invested into ensuring that learned model weights can be transferred between A2C and IL agents. In
particular, when restoring a model the TensorFlow checkpoints system requires that all computational
graph variables match. This resulted in several “hacks” whose only purpose was to ensure that
computational graphs match between the two agents. For instance, we resorted to defining a fake
value loss term (with zero weight) even though we never use the value variable in the IL agent.

While expert demonstrations in Imitation Learning typically refer to samples gathered by observing
a human expert, this was difficult to achieve as part of this project as the StarCraft II game replay
processing in PySC2 library was faulty at the time of writing. For this reason the expert data is
gathered by launching reference A2C RL agent (trained to baseline scores) in inference mode and
recording its state, action pairs as it plays the mini-games.

2



An action in the StarCraft II environment consists of multiple parts, e.g. a mouse-click action identifier
and pixel coordinates of the screen or minimap for the click. Although the correct way to represent
these actions would be through conditional joint probability, it would be computationally infeasible.
In practice we make the simplifying assumption that sub-actions are independently distributed. In the
context of IL Agent this means that SGD loss function is summed across all policy outputs:

J(θ) =

M∑
i=1

P∑
j=1

yij log(πj(aij |si; θ))

where P is the number of policy outputs (in our case it is 14), πj(a|s) is the j-th policy of the agent,
and yij , aij are expert actions for i-th sample and j-th sub-action.

Implemented agent is trained with gathered data in a typical supervised learning fashion by sampling
random batches of sizes 128 to 512 (depending on the minigame) from the expert dataset and training
with Adam optimizer [Kingma and Ba, 2014] with 1e − 4 learning rate. All model weights are
initialized with He initializer [He et al., 2015]. Hyperparameter choices were made empirically by
trying out from a set of three-four educated guesses and personal preferences.

4 Results

We have collected results on seven StarCraft II mini-games released with [Vinyals et al., 2017]. These
mini-games contain small predetermined MDPs that test agents ability to solve a wide range of tasks,
e.g. navigating to a target location, defeating opponent army, collecting resources.

To collect the results we loaded the trained model into the RL agent and executed it in inference mode
(no training) on 32 environments, recording mean and standard deviation of the cumulative score for
an episode. We compare these results with the baseline A2C RL agent, DeepMind FullyConv agent
and human expert results. Please refer to Table 1 below for an overview.

Map Name Imitation Agent A2C Agent DeepMind Human
MoveToBeacon 23.6 ± 1.8 26.3 ± 0.5 26 28
CollectMineralShards 82.7 ± 12.3 106 ± 4.3 103 177
DefeatRoaches 136 ± 47 147 ± 38.7 100 215
DefeatBanelingsAndZerglings 192 ± 112 230 ± 106.4 62 727
FindAndDefeatZerglings 27 ± 2.23 43 ± 5 45 61
CollectMineralsAndGas 3250 ± 240 3340 ± 185 3978 7566
BuildMarines 0 0.55 ± 0.25 3 133

Table 1: Mean and standart deviation of total reward for an episode of the implemented agent relative
to benchmarks.

The results nearly match reference A2C RL agent on all mini-games. The BuildMarines map with
zero score is an environment that requires long-term economic planning and was unobtainable even
for the reference A2C RL agent, which can only learn a policy that sometimes builds a couple of
units most likely through sheer luck.

The Imitation Learning agent has struggled with replicating expert policy on the
FindAndDefeatZerglings mini-game, most likely due to the partial observability of the mini-
game. This situation provided an opportunity to test whether the RL agent is able to continue its
learning process from the IL agent model weights.

We have trained the RL agent until it was clear that the average score has improved (training the
agent back to reference results would take a significant amount of samples and thus skipped due to
time considerations).

We have additionally investigated how the expert dataset size affects IL agents ability to learn
(Table 2). We have concluded that the IL agent was able to reach target scores with 100,000 samples
per task, though for some of the simpler tasks as low as 1000 samples was enough. For a human
expert to gather 100,000 samples it would take approximately one to two hours of gameplay, which
while tedious is not unrealistic.

3



Map Name / Samples 1,000 10,000 100,000
MoveToBeacon 12.2 23.6 23.6
CollectMineralShards 24 73 82.7
DefeatRoaches 10 45 136
DefeatBanelingsAndZerglings 34.2 53.9 192
FindAndDefeatZerglings 11 19 27
CollectMineralsAndGas 3250 3250 3250
BuildMarines 0 0 0

Table 2: Imitation Agent results for various number of samples provided during supervised training
stage.

While these results are positive, they are quite unexpected given the complexity of the tasks, the
sizes of the state and action spaces, and general instability of imitation learning based approaches.
One possible reason for this phenomenon is that while action space is big and difficult to explore
stochastically via RL based approaches, once it is learned the policy distribution entropy is quite low,
meaning that majority of the probability mass is concentrated in a small subset of the action space
which is easy to “memorize”. In fact on some of the maps such as DefeatZerglingsAndBanelings
or CollectMineralsAndGas moderate results can be achieved with just a few initial lucky actions.

Furthermore, these figures can be deceiving as the current target scores measured are significantly
below those of an human expert. Additionally, the SC2LE mini-games test only a small portion of
the tasks that a full StarCraft II game encompasses. Still, these proof-of-concept results show that
Imitation Learning can be a viable approach to StarCraft II environment and provide clear path for
future experiments with real human expert demonstrations.

5 Conclusion

In this work we have investigated application of Imitation Learning to the game of StarCraft II. We
have successfully shown that an agent can learn good policies from expert demonstrations with
reasonable amount of samples. We have further verified that an RL agent is capable of continuing
the learning process after pre-training model weights with Imitation Learning. Implemented agent is
available online https://github.com/inoryy/pysc2-rl-agent on the imitation branch.

In the future pre-training of model weights for subsequent RL agent training could be further
explored by learning from human expert demonstrations on some of the harder tasks such as
BuildMarines, where the current model fails to learn anything reasonable. Additionally, more
sophisticated Imitation Learning approaches can be explored, such as DAgger [Ross et al., 2010] or
GAIL [Ho and Ermon, 2016].

References

[Abadi et al., 2016] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray,
D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2016).
TensorFlow: A system for large-scale machine learning. ArXiv e-prints.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. In 2015 IEEE International
Conference on Computer Vision (ICCV). IEEE.

[Ho and Ermon, 2016] Ho, J. and Ermon, S. (2016). Generative Adversarial Imitation Learning.
ArXiv e-prints.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimiza-
tion. ArXiv e-prints.

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533.

4

https://github.com/inoryy/pysc2-rl-agent


[Ring, 2018] Ring, R. (2018). Replicating DeepMind StarCraft II Reinforcement Learning Bench-
mark with Actor-Critic Methods.

[Ross et al., 2010] Ross, S., Gordon, G. J., and Bagnell, J. A. (2010). A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning. ArXiv e-prints.

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,
Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D. (2016). Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489.

[Vinyals et al., 2017] Vinyals, O., Ewalds, T., Bartunov, S., Georgiev, P., Sasha Vezhnevets, A., Yeo,
M., Makhzani, A., Küttler, H., Agapiou, J., Schrittwieser, J., Quan, J., Gaffney, S., Petersen,
S., Simonyan, K., Schaul, T., van Hasselt, H., Silver, D., Lillicrap, T., Calderone, K., Keet, P.,
Brunasso, A., Lawrence, D., Ekermo, A., Repp, J., and Tsing, R. (2017). StarCraft II: A New
Challenge for Reinforcement Learning. ArXiv e-prints.

5


	Introduction
	Background
	Methods
	Results
	Conclusion

